5,386 research outputs found

    Standalone Track Reconstruction in the T-stations

    Get PDF
    An algorithm for fast and efficient tracking in the T-stations is describedtogether with its performance in the DC06 data challenge. An efficiency of94--95 %95~\% is achieved for tracks with momenta above 2~GeV for a ghost rate of 13 %13~\%

    Updated Performance of the T-Seeding

    Get PDF
    Improvements to the performance of the track seeding since the start of the DC '06 data challenge are described. For tracks above 2~GeV an efficiency of 96.3 %96.3~\% is achieved for a ghost rate of 8.1~\%. In addition, the expected performance of the algorithm during the 2007 pilot run is discussed

    New waterboatmen records for Western Canada (Hemiptera: Corixidae)

    Get PDF
    Trichocorixa verticalis (Fieber) is reported for the first time from the mainland of British Columbia and the subspecific assignment is discussed. Based on specimens in the Spencer Entomological Museum, one provincial record and one territorial record are added to the recent checklist of Canadian Hemiptera

    Applicability and Utility of the Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASAs Johnson Space Center is responsible for curating all of NASAs astromaterial sample collections (i.e. Apollo samples, Luna Samples, Antarctic Meteorites, Cosmic Dust Particles, Microparticle Impact Collection, Genesis solar wind atoms, Stardust comet Wild-2 particles, Stardust interstellar particles, and Hayabusa asteroid Itokawa particles) [1-3]. To assist in sample curation and distribution, JSC Curation has recently installed an X-ray computed tomography (XCT) scanner to visualize and characterize samples in 3D. [3] describes the instrumental set-up and the utility of XCT to astromaterials curation. Here we describe some of the current and future projects and illustrate the usefulness of XCT in studying astromaterials

    Competitive market for multiple firms and economic crisis

    Full text link
    The origin of economic crises is a key problem for economics. We present a model of long-run competitive markets to show that the multiplicity of behaviors in an economic system, over a long time scale, emerge as statistical regularities (perfectly competitive markets obey Bose-Einstein statistics and purely monopolistic-competitive markets obey Boltzmann statistics) and that how interaction among firms influences the evolutionary of competitive markets. It has been widely accepted that perfect competition is most efficient. Our study shows that the perfectly competitive system, as an extreme case of competitive markets, is most efficient but not stable, and gives rise to economic crises as society reaches full employment. In the economic crisis revealed by our model, many firms condense (collapse) into the lowest supply level (zero supply, namely bankruptcy status), in analogy to Bose-Einstein condensation. This curious phenomenon arises because perfect competition (homogeneous competitions) equals symmetric (indistinguishable) investment direction, a fact abhorred by nature. Therefore, we urge the promotion of monopolistic competition (heterogeneous competitions) rather than perfect competition. To provide early warning of economic crises, we introduce a resolving index of investment, which approaches zero in the run-up to an economic crisis. On the other hand, our model discloses, as a profound conclusion, that the technological level for a long-run social or economic system is proportional to the freedom (disorder) of this system; in other words, technology equals the entropy of system. As an application of this new concept, we give a possible answer to the Needham question: "Why was it that despite the immense achievements of traditional China it had been in Europe and not in China that the scientific and industrial revolutions occurred?"Comment: 17 pages; 3 figure

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Two-way coupling of FENE dumbbells with a turbulent shear flow

    Full text link
    We present numerical studies for finitely extensible nonlinear elastic (FENE) dumbbells which are dispersed in a turbulent plane shear flow at moderate Reynolds number. The polymer ensemble is described on the mesoscopic level by a set of stochastic ordinary differential equations with Brownian noise. The dynamics of the Newtonian solvent is determined by the Navier-Stokes equations. Momentum transfer of the dumbbells with the solvent is implemented by an additional volume forcing term in the Navier-Stokes equations, such that both components of the resulting viscoelastic fluid are connected by a two-way coupling. The dynamics of the dumbbells is given then by Newton's second law of motion including small inertia effects. We investigate the dynamics of the flow for different degrees of dumbbell elasticity and inertia, as given by Weissenberg and Stokes numbers, respectively. For the parameters accessible in our study, the magnitude of the feedback of the polymers on the macroscopic properties of turbulence remains small as quantified by the global energy budget and the Reynolds stresses. A reduction of the turbulent drag by up to 20% is observed for the larger particle inertia. The angular statistics of the dumbbells shows an increasing alignment with the mean flow direction for both, increasing elasticity and inertia. This goes in line with a growing asymmetry of the probability density function of the transverse derivative of the streamwise turbulent velocity component. We find that dumbbells get stretched referentially in regions where vortex stretching or bi-axial strain dominate the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality

    Prudent engineering practice for cryptographic protocols

    Full text link
    corecore